

July 11, 2024

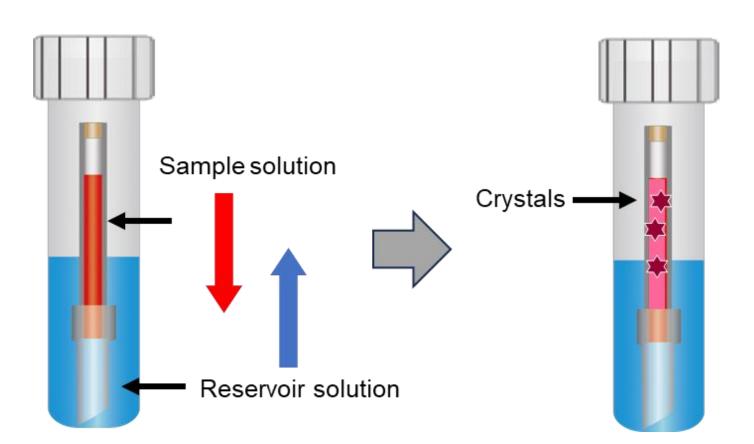
Overview of Kirara service and its new results on material bioproduction

Hiroaki Tanaka

Confocal Science, Inc. (http://www.confsci.co.jp) https://orcid.org/0000-0001-8814-740X

'Kirara' Service

- 'Kirara' service was launched in 2019.
- An initial target: high-quality protein crystal growth
- \Rightarrow challenging to other experimental field.
- A tiny incubator: ICE Cubes facility in the ISS Columbus module.



©NASA/ESA

• 96 samples can be installed.

The principle of the counter diffusion

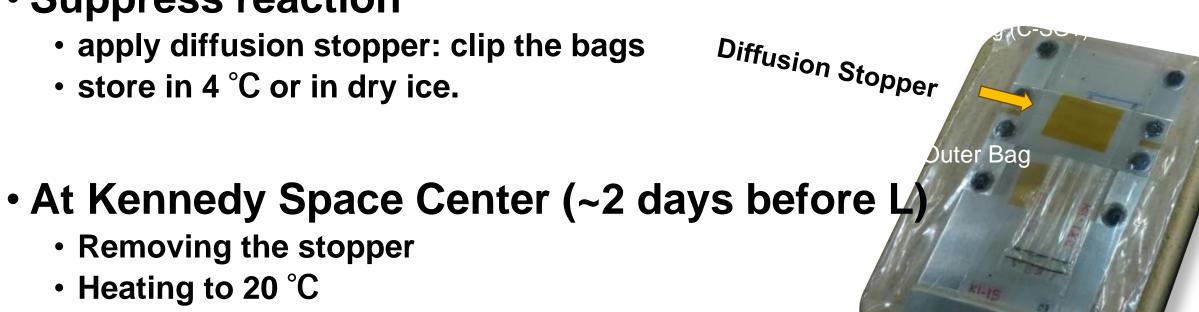
- Glass capillary: A protein sample is loaded.
- Gel-Tube: A silicon-tube preloaded with agarose gel.
- The device is dipped in a reservoir solution.
- The reservoir solution diffuses in.
- The concentration increases and a protein crystal starts growing.

Sample configuration for Kirara

• Double containment:

- Bags: non-gas-permeable soft plastic sheet, sealed by heat.
- Inner vessel: glass capillary with silicon tube
- Mixing two solutions:
 - One in the inner vessel and the other in the tube.
- Bags, vessels, experimental methods, and procedures can be customized.

Loading sample & starting reaction


Loading sample at CS Lab. (2~4 weeks before launch)

Suppress reaction

- apply diffusion stopper: clip the bags
- store in 4 °C or in dry ice.

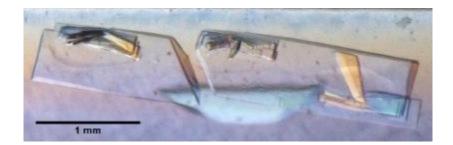
Removing the stopper

• Heating to 20 °C

⇒ Reaction Starts!

Time-Line of the service

- -4 months Application data sheet
- -3 months Samples for the optimization (optional)
- -3 weeks Sending samples (nominal)
- -2 to 4 weeks Loading samples
- -1 week Transporting samples
- -2 days Install samples @ Kennedy Space Center(20 °C)


Launch to the ISS (20°C)

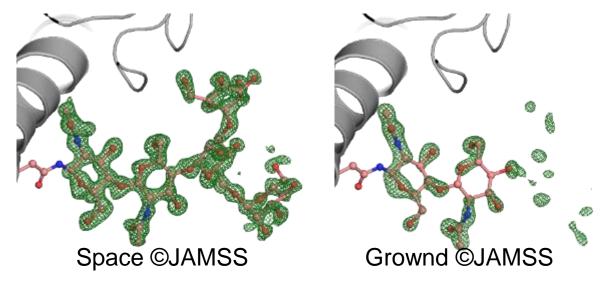
- +1 month Recovery from ISS (20°C)
- +1.5 months Delivery to users (20°C)

0 day

Kirara launched samples (# of entry)

- Protein crystallization
 - For X-Ray diffraction (13)
 - For neutron diffraction (3)
 - For STEAM education (3)

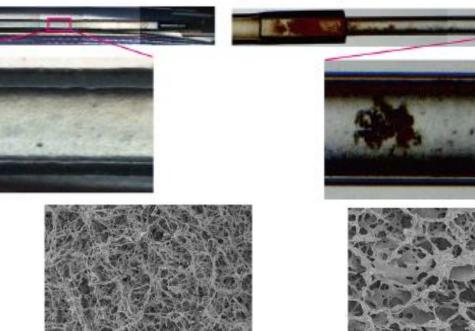
- Biomolecular Structure Formation (2)
- Colloid crystallization (3)
- Small molecular crystallization (4)
- Small molecular complex formation (1)
- Enzymatic cellulose synthesis (5)
- Bacterial cellulose production (2)



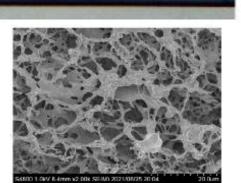
Benefits for the protein crystallization

• Cluster \rightarrow Single crystal

	Space	Ground
Data Collection		
Space group	P21	P21
Unit cell dimensions		
a, b, c (Å)	50.26 127.49 63.04	50.55 127.94 63.68
α,β,γ(°)	90.00 91.44 90.00	90.00 91.15 90.00
Resolution (Å) ↓	46.74-1.06 (1.08-1.06)	63.97-1.67 (1.70-1.67)
Mosaicity (°) ↓	0.33-0.64	0.24-1.64
Completeness (%)	98.8 (94.6)	98.1 (95.8)
Mean I/ σ (I)	8.2 (1.6)	5.3 (3.3)
Rmeas	0.102 (0.984)	0.426 (2.210)
Refinement		
Rfree	0.188	0.212
Twin fractions(%) ↓	N/A	7.5*
Precipitant solution	PEG 4000 / NaCl	PEG 4000 / NaCI


Clear electron density map. \Rightarrow The atomic coordinates become more accurate.

Enzymatic cellulose synthesis


Capilla

- а CDP + cellobiose GelTube (Capillary) • α-G1P (Reservoir) Cellulose **Uniform outlook.** Sparse network in SEM image.
- Launched in Kirara #1, 2019
- The enzymatic cellulose synthesis in space is the first in the world.

GelTube

Capilla

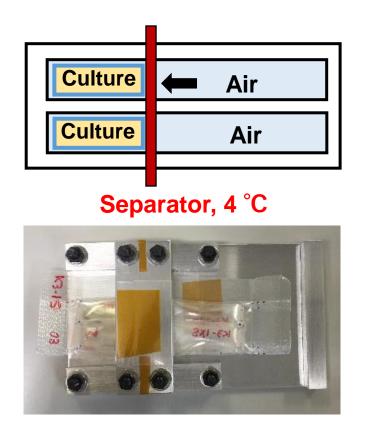
on ground

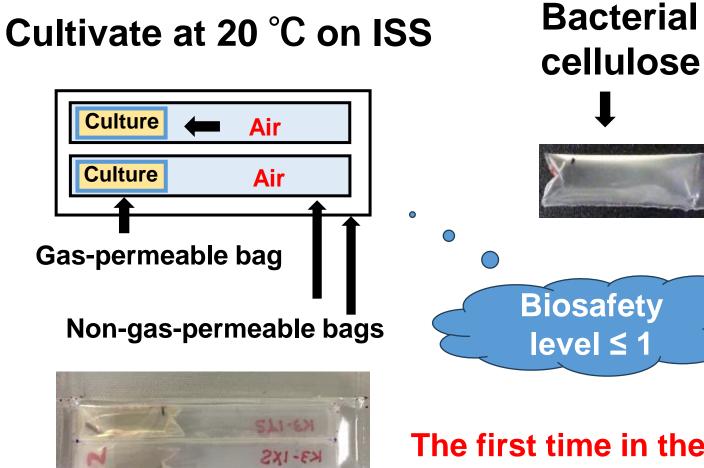
Optical

Images

in space

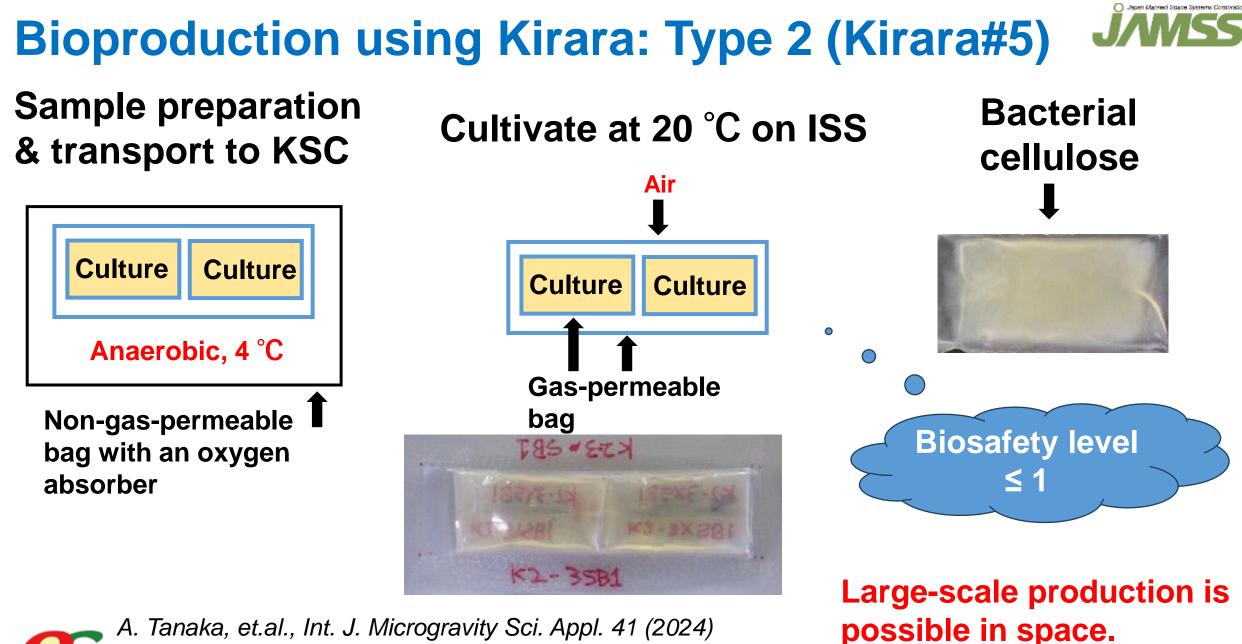
Capilla


107


T. Kuga, et.al., (2022) Cellulose, https://doi.org/10.1007/s10570-021-04399-0

Bioproduction using Kirara: Type 1 (Kirara#4)

Sample preparation & transport to KSC



The first time in the world. Cellulose production is possible in space.

Japan Manned Space Statems Compress:

A. Tanaka, et.al., Int. J. Microgravity Sci. Appl. 41 (2024) 410302, https://doi.org/10.15011/jasma.41.410302 ©2024 JAMSS / Confocal Science Inc.

410302, https://doi.org/10.15011/jasma.41.410302

Contact JAMSS

 Containers, experimental methods, and procedures can be customized according to user's request.

As earlier is preferable to contact us!!

• JAMSS Kirara:

https://www.jamss.co.jp/en/space_utilization/kirara/

• JAMSS Kirara Data Sheets etc:

https://www.jamss.co.jp/en/space_utilization/kirara/

JAMSS inquiry form

https://www.jamss.co.jp/en/contact_service/

